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In several European countries, dental composites are replacing mercury-containing
amalgams as the most common restorative materials. One problem with dental composites
is residual stresses which may lead to poor performance of the restoration. In the present
study, a combined modeling and materials characterization approach is presented and
predictions compare well with experimental data on residual stresses. The model takes
stress relaxation into account through the complete relaxation time spectrum of the resin.
The approach allows for detailed parametric studies where resin and composite
composition as well as cure conditions may be tailored with respect to residual stress
generation. C© 2003 Kluwer Academic Publishers

1. Introduction
The field of restorative dental materials has tradition-
ally been dominated by mercury-containing metals. In
European countries, among those Sweden, dental com-
posites are increasingly replacing metals as the dental
material of choice. Dental materials are typically based
on acrylates containing glass fillers at a volume fraction
of 0.5–0.6. The viscous dental composite is placed in
the tooth cavity and the polymerization reaction is initi-
ated using a dental lamp, typically blue light. Free rad-
ical polymerization starts and the increase in degree of
conversion is associated with a substantial decrease in
volume of the polymer. Gelation occurs at much lower
degree of conversion as compared with, for instance,
epoxies. During typical conditions, gelation is accom-
panied by almost instantaneous vitrification where the
polymer enters the glassy state. As a consequence, con-
siderable residual stresses may develop in the tooth and
in the filling material. Detrimental effects include tooth
cracking and marginal leakage so that bacteria may en-
ter at the interface between the tooth structure and the
synthetic filling.

In the present study, the objective is to develop a
combined modeling and materials characterization ap-
proach for prediction of residual stresses. Ultimately
such a model may be implemented in a finite element
code so that detailed predictions of the stress state in a
tooth structure become feasible. Presently, we are con-
cerned with the material descriptions. A model material
is used so that filler volume fraction can be varied. In a
previous paper [1], micro-mechanics models for com-
posite materials have been used to predict elastic prop-

erties and volume change on the basis of constituent
properties and their volume fractions. These micro-
mechanical models have been included in the modeling
done in the present study. An interesting application of
this approach is in the tailoring of constituent properties
and composition in order to optimize material proper-
ties. Experimental work has indicated strong stress re-
laxation effects in dental composites and a viscoelastic
material model is therefore included.

Previous modeling efforts for residual stresses in den-
tal composites are limited in scope. Several are based
on assumptions of elastic material behavior [2–7]. In a
recent paper [8], FEM is applied to evaluate the stress
state in a tooth structure containing a dental compos-
ite restoration. Although the material is described as
viscoelastic, the description is simpler than ours, partly
because the primary objective is to evaluate a given
structure with respect to the final residual stress state
at different locations. Our primary interest is instead in
residual stress development with time. We develop a
model where we can evaluate effects from cure kinet-
ics, cure conditions, temperature, matrix viscoelasti-
city, resin and filler elastic constants, non-linear matrix
shrinkage and filler volume fraction.

2. Experimental procedure
2.1. Materials
The resin was prepared from a 1:1 weight ratio mix-
ture of Ebecryl©R 610 from UCB Chemicals, Belgium,
and Triethyleneglycol dimethacrylate (TEGDMA)
from Aldrich Chemicals. The photoinitiator system
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consisted of 1 wt% of camphorquinone (CQ) and
0.08 wt% of N,N-dimethyl-p-toluidine (DMPT), both
were provided by Aldrich Chemicals. All chemical
products were used as received.

The proportion of CQ was chosen carefully in order
to minimize the gradient of degree of conversion for
1 mm thick samples. Indeed, since CQ absorbs light,
the top and the bottom of the sample will not receive the
same radiation energy, leading to differences in degree
of conversion α. A low quantity of CQ would produce
homogeneous α, but the reaction would be too slow.
The concentration chosen provides a reasonably homo-
geneous degree of conversion in 1 mm thick samples
with a fast reaction.

The filler was Spheriglass©R from Potters and
Ballotini, grade 5000 (solid glass spheres, mean diam-
eter 3.5–7 microns, silanised for acrylate systems). The
filler content was varied between 0–55 vol%.

2.2. Dynamic mechanical analysis
The resin was degassed at room temperature to re-
move entrapped air. It was then poured in a Teflon
mould with the following dimensions: 1 × 24 × 50 mm.
Polyethyleneterephtalate (PET) films were placed on
top and bottom of the mould. The sample was light
cured with a Dulux S/E 9 W/71 lamp which has a high
output spectrum in the blue range. One face of the sam-
ples was irradiated at a distance of 7 mm; the exposition
time ranging from 15 s to 7 min in order to obtain differ-
ent degrees of conversion. After irradiation, the samples
were left one month in dark conditions at room temper-
ature. The samples were then cut and polished to the
final dimension, approximately 1 × 3 × 37 mm.

The instrument used was a DMTA MK II from Poly-
mer Laboratories. The samples were tested in tension.
A step temperature program was used where isother-
mals are separated by 8◦C. The complex modulus was
measured during the isothermal for five frequencies,
0,3-1-3-10-30 Hz. The start temperature was different
for each specimen and was between −100 and 0◦C; the
test was performed until the sample failed.

2.3. Differential scanning calorimetry
Cure kinetics was studied using a Perkin Elmer DSC
7 differential scanning calorimeter (DSC). The stan-
dard lids furnace was replaced by two quartz plates,
in order to irradiate the reactive mixture in open sam-
ple pans. The lamp used for curing samples for DMTA
and residual stress measurements was used operating in
static air. The maximum heat of reaction �H = 150 J/g
was measured using a thermal initiator (Benzoyl Per-
oxide) during a DSC scan at 10◦C/min. Measurements
of the degree of conversion, α, as a function of time at
30-40-50-60-70◦C were used in order to determine the
kinetic parameters of the model. The isothermally cured
samples of known final degree of reaction were sub-
jected to a dynamic DSC scan in order to estimate their
glass transition temperature (Tg) and residual reactiv-
ity. The Tg of highly crosslinked polymers is not easily
observed using DSC and hence the onset of residual
reactivity (Tonset) was assumed to correspond to the Tg.
In fact, the residual reactivity in DSC heating scans was

observed when the temperature reached the Tg of the
resin. At this point, molecular mobility increased and
reaction of residual double bonds commenced [9, 10].
The radical needed for the residual reactivity, originated
during light exposure and can remain entrapped but ac-
tive for more than one week [11]. Residual reactivity is
not desired for DMTA experiments and hence the sam-
ples were stored in dark conditions for a month. After
this period, a DSC scan performed on DMTA samples
confirmed the lack of any residual reactivity.

Tonset is closely related to the glass transition tem-
perature, Tg, so it is not surprising that we observed
Tonset = f (α) to be linear. Indeed Maffezoli et al. [9]
observed it for Tg for methacrylate dental resins, in
agreement with other workers [12, 13].

Due to the temperature increase during curing, α

of the DMTA samples had to be measured experimen-
tally. The Tonset was determined of a sample prepared
under the same conditions as a DMTA sample. When
Tonset is above room temperature, it has been observed
to correspond with the temperature, Tτ E

p
, at which

the relaxation spectrum, obtained with DMTA, has its
maximum. For this reason, Tτ E

p
was assumed equal to

Tonset even if no reaction can be observed after one
month. The degree of conversion, α, of the DMTA sam-
ples was then determined from the Tonset versus α curve.

2.4. Matrix shrinkage measurements
Some pure resin was degassed and then three small
drops were deposited on a flat metal surface, on which
a thick layer of grease was applied to avoid any adhe-
sion. The sample was light cured for 7 minutes with a
Dulux S/E 9 W/71 lamp at a distance of 7 mm. A digital
camera recorded the sample dimensions during curing.
Then images taken at different time were analyzed to
determine the change in diameter taken as the linear
shrinkage. The degree of cure was determined using the
cure kinetics model assuming isothermal conditions at
the ambient temperature measured for each experiment.

2.5. Residual stress measurement
Compared with the bimaterial experiment previously
used by Feilzer et al. [14], the experiment was improved
in order to obtain the evolution of stress during curing
(strain gauge methodology). The set-up is illustrated in
Fig. 1.

The composite mixture was degassed at room tem-
perature in order to remove any air bubbles. Then it
was poured on an aluminum substrate surrounded by
plasticine walls forming a temporary mold. Two strain
gauges, CEA-13-240UZ-120 from the Measurements
group, were bonded to the substrate and a thermo-
couple was taped centrally, between the strain gauges,
at the aluminum substrate bottom, see Fig. 1. The
aluminum substrate had the following dimensions:
1 × 20 × 70 mm. The thickness of the composite mix-
ture was approximately 0.7 mm. A PET film was placed
on top and the sample was light cured for 7 minutes with
a Dulux S/E 9 W/71 lamp at a distance of 7 mm.

The strain gauges were connected to a quarter Wheat-
stone bridge of an amplifier. The data were then con-
verted to digital format and saved in a computer.
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Figure 1 Experimental set-up for measurement of residual stress.

3. Data reduction
3.1. DMTA experiment
From the experiment we obtained the storage modu-
lus at different temperatures for different frequencies.
For modeling purposes we need Young’s modulus as a
function of time. Time-temperature superposition [15],
commonly applied in viscoelasticity theory, was there-
fore used in order to determine the shift function at
a reference temperature of 55◦C, the chosen temper-
ature of the isothermal model for pure resin. For the
time-temperature superposition procedure, data should
be corrected by

ρ

ρ0

T

T0
(1)

where T is the temperature of the isothermal, T0 is the
reference temperature, ρ is the density at T , and ρ0 is
the density at T0. The density ratio has been neglected
because the variation of the density as a function of
temperature is unknown but considered to be small [15].

From the time-temperature superposition procedure,
we obtain the change in storage modulus as a function of
time; what we need in our master model is the relaxation
modulus as a function of time. The relaxation modulus
was obtained using the following approximation [16]:

E(t) ≈ E ′(ω)|ω = 2/π t (2)

where E is the Young’s modulus, E ′ is the storage mod-
ulus, andω is the frequency. This expression was chosen
for its simplicity and because it gives a good approxi-
mation [16].

3.2. Residual stress
From the bimaterial experiment, we obtain the strain
in the substrate. Since the stress state in the mate-
rial is two-dimensional, plate theory was used in or-
der to obtain the residual stress in the material from
the strain in the substrate. The substrate is consid-

ered infinitely rigid and the shear deformation between
the free “top” surface of the dental composite and the
constrained “bottom” surface is assumed negligible.
Based on classical plate theory, the following equations
were developed:

ε =

 tc + tm

2
−

[
t2
m

6 + t2
c

2 + tctm

2

]
+ Ec(1−νm )

Em (1−νc)
t3
c

6tm

tc + tm


 k

(3)

σ =
Em t3

m

(1−νm ) + E2
c (1−νm )

Em (1−νc)2

t4
c

tm
+ Ec

1−νc
tc
(
4t2

m + 4t2
c + 6tctm

)
6(tc + tm)tc

k

where ε is the measured strain, k is the curvature, E is
the Young’s modulus, ν is the Poisson’s ratio, t is the
thickness, σ is the stress, and the subscripts m and c
refer to the metal and composite respectively.

4. Modeling
Modeling of residual stresses under isothermal condi-
tions requires a set of interacting submodels, see Fig. 2.
The first submodel is the cure kinetics model. This
model predicts the degree of conversion α as a function
of time and temperature for the resin. In the present
study, we use the same light intensity during curing, so
this variable is excluded.

The temperature-time history during processing in
combination with the cure kinetics model then provide
us with the development in degree of conversion. In
two additional submodels, the degree of conversion is
related to the volume change and to the stiffness of
the resin (see the two boxes in Fig. 2). Note that in the
present study we only need to consider the case of strain
in one direction.

A realistic model also needs to include viscoelas-
tic effects. A viscoelastic model is therefore needed
which can predict the reduction in Young’s modulus of
the resin with time under stress at a given temperature
and degree of conversion. By comparison between the
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Figure 2 Overall modeling scheme illustrating the different submodels.

elastic and viscoelastic case, the viscoelastic contribu-
tion may be estimated. It will be shown later that a non-
linear shrinkage model including vitrification effects is
also necessary.

We then combine the models for polymer behavior
with micromechanics models (see the micromechanics
frame in Fig. 2) in order to predict volume shrinkage
and stiffness properties of the composite for any filler
volume fraction.

Finally, having determined the chemically induced
volume change and the stiffness of the composite, the
residual stresses can be calculated using a stress model,
see Fig. 2. This model gives us the residual stress in the
dental composite for the bimaterial experiment cho-
sen in the present study. Models are presented in the
following whereas model parameters are presented in
Table I.

T ABL E I Parameters for modeling of the composite

E f (GPa) 72
ν f 0.22
νm 0.37
Log (Eu ) (Pa) −0.870 * α + 10.048
Log (E∞) (Pa) 2.368 * α + 6.478
Log (aT ) = Log (τ E

p ) (s) −74,91 * (T − Tτ E
p

)/(366.07 + T − Tτ E
p

)
Tτ E

p
(◦K) 148 + 340.4 × α

�ε∞
m (%) −5.9

K0 (s−1) 0.1333
m 0.5271
n 1.4618
Ea (J/mol) 853.44
αm −.06389 + .001896 * T

4.1. Cure kinetics
The degree of conversion as function of time was
obtained by solving a simple pseudo-autocatalytic
equation [9]:

dα/dt = K0 exp(−Ea/RT )αm(αm − α)n

(4)
αm = f (T )

where K0 is the pre-exponential factor of the rate con-
stant, R is the gas constant, Ea is the activation energy,
T is the absolute temperature, αm is the maximum de-
gree of reaction for the temperature T , m and n are fit-
ting parameters independent of temperature, and f is an
unknown function. Isothermal DSC experiments were
carried out in order to determine the material constants,
m and n, and the unknown function, f , in Equation 4.
The procedure was previously applied to dental com-
posites by Maffezoli et al. [9].

4.2. Stiffness: viscoelasticity
We then need a model for the change in viscoelastic
behavior from the rubbery state, through the glass tran-
sition region and into the glassy state. Considering the
present isothermal case, the following model was cho-
sen for the viscoelastic Young’s modulus of the matrix,
Em [17], as a function of time, temperature and degree
of conversion. The particular choice is primarily based
on the fact that our polymer has a broad relaxation time
distribution.

Em(α, t, T ) = E∞(α) + (Eu(α) − E∞(α))

×
29∑

i=1

Wi exp

[ −t

τ E
p (α, T )10i−15

]
(5)

where E∞ is the relaxed modulus, Eu is the unrelaxed
Young’s modulus, Wi are weight factors, τ E

p is the prin-
cipal relaxation time (the time at which the relaxation
spectrum has its maximum), t is the time, T is the tem-
perature, and α is the degree of conversion. In theory,
the weight factors depend on the degree of conversion.
As demonstrated in the results section, Wi is indepen-
dent of α in our case, so we obtain a single master curve.
To find the weight factors, nonlinear curve fitting of
the master curve was performed using the Levenberg-
Marquardt method [18].

From time-temperature superposition theory, τ E
p is

related to the shift function, aT , by the following
relation:

τ E
p (α, T ) = τ E

p (α, Tref) aT (T, Tref) (6)

where Tref is a reference temperature. If we chose
Tref = Tτ E

p
, then τ E

p (α, Tref) = 1 second independent of
α. The classical WLF equation was chosen to describe
the shift function aT (T , Tref). As discussed previously
Tτ E

p
= Tonset which experimentally was found to be lin-

early related to α.
The Poisson’s ratio, νm , was assumed constant.

Beckwith [19] measured the Poisson’s ratio of neat
epoxy during a low strain creep test and no appreciable
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time-dependence of the Poisson’s ratio was ob-
served. Moreover, the model of Bogetti and Gillespie
[20], used for residual stress predictions in fiber
composites, contains a Poisson’s ratio independent of
the degree of conversion. They compared their model
with the model of Levitsky and Shaffer [21–23] which
assumes a constant bulk modulus (Poisson’s ratio
varies). They concluded that the model predictions con-
verged very rapidly as the degree of conversion in-
creased for a thermoset polyester. We therefore as-
sumed Poisson’s ratio to be independent of time and
degree of conversion. The value for νm from ref. [1] was
used.

4.3. Stiffness: elasticity
For elastic property modeling it was assumed that the
dynamic modulus determined at 1 Hz is the elastic mod-
ulus, Em · Em was represented by an expression similar
to Equation 5 except that the time is constant and equal
to 1 second:

Em(α, T ) = E∞(α) + (Eu(α) − E∞(α))

×
29∑

i=1

Wi exp

[ −1

τ E
p (α, T )10i−15

]
(7)

with the same notation as in Equation 5.
As for the viscoelastic case, νm is considered inde-

pendent of the degree of conversion.

4.4. Volume change
In order to calculate stresses in our case, we only need
the linear strain of the matrix, εm , rather than the volume
change, �V . The relationship between these parame-
ters is the following:

�V = (1 − εm)3 (8)

where εm is considered positive for contraction.
The linear strain is a function of the degree of con-

version. Since vitrification occurs during curing, strain
is also a function of time and temperature. A non-linear
model similar to the one for the Young’s modulus was
used to model shrinkage as a function of degree of
conversion:

�εm(α, t, T ) = �ε∞
m + (−�ε∞

m

)
×

29∑
i=1

Wi exp

[ −t

τ ε
p(α, T )10i−15

]
(9)

where �εm is analogous to a shrinkage coefficient since
it describes the slope of the linear shrinkage versus
α, �ε∞

m is the shrinkage coefficient in the equilibrium
state, Wi are weight factors, τ ε

p is the principal relax-
ation time, t is the time, and α is the degree of con-
version. The same weight factors as for the Young’s
modulus were chosen. This non-linear model is used
in combination with the viscoelastic model for the
Young’s modulus.

In combination with the elastic Young’s modulus the
following linear model was used:

�εm(α) = �ε∞
m (10)

It is of interest to also consider a linear shrinkage model
in the viscoelastic calculations. It then becomes pos-
sible to estimate the importance of the nature of the
shrinkage model. In the context of viscoelasticity the-
ory, linear shrinkage as a function of time follows from
the following equation:

εm(t) =
∫ t

0
�εm(α, t − θ, T )

dα(θ )

dθ
dθ (11)

where θ is an integrating variable.

4.5. Micromechanics modeling
of the composite

The aim is predictions of stresses for different filler
contents in the composite. For this reason, the proper-
ties of the pure resin were determined and then micro-
mechanical models were used to determine composite
properties from resin and filler properties.

The volume change for the composite due to matrix
chemical shrinkage was determined using a microme-
chanical model developed by Levin for thermal expan-
sion and reviewed in [24]. This model was used since
the volume change problem is analogous to the thermal
expansion problem, as discussed in [1]. In the present
case, the volume change of the filler is zero since the
temperature is constant. The volume change is therefore

εc = εm

(1/Km − 1/K f )

[
1

Kc
− 1

K f

]
(12)

where K is the bulk modulus, ν is the Poisson’s
ratio, εm is the linear chemical shrinkage, the subscripts,
c, f , and m refer to the composite, filler, and matrix re-
spectively, and V f is the volume filler content. The bulk
modulus of the composite is obtained from Equation 10.
The bulk modulus of the matrix was considered con-
stant and equal to its final value.

The elastic modulus of the present dental material is
well described by the upper bound of Hashin’s com-
posite spheres model [25] as is apparent from [1]. The
procedure is to first determine the bulk modulus and the
shear modulus in order to obtain the Young’s modulus
of the composite. The expressions are:

Kc = Km + V f (K f − Km )

1 + (1 − V f )
[
(K f − Km )/

(
Km + 4

3 Gm
)]

Gc = (13)

Gm

[
1 + V f

1/(γ − 1) + A(1 − V f ) − V f

(
1 − V 2/3

f

)2/
(
BV 7/3

f + C
)
]

with

γ = G f /Gm

A = 2(4 − 5νm)

15(1 − νm)
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B = 10(1 − νm)

21

× (7 − 10ν f )(7 + 5νm) − γ (7 − 10νm)(7 + 5ν f )

4(7 − 10ν f ) + γ (7 + 5ν f )

C = 10

21
(7 − 10νm)(1 − νm)

where the notation are the same as in the previous
equation.

The relaxed and unrelaxed Young’s modulus for the
composite were calculated using the upper bound of
Hashin’s composite spheres model. The weight factors
and the principal relaxation times were assumed to be
independent of the filler volume fraction. This assump-
tion is based on experimental observations discussed
by Hashin [26].

The Poisson’s ratio for the composite was obtained
from the bulk modulus and the upper bound of the shear
modulus computed by Hashin’s composites sphere
model.

4.6. Stress model
In the two-dimensional (2D) case, for an infinitely rigid
substrate under isothermal conditions, the axial residual
stress in the material is obtained from elasticity theory
[27]. Assuming a νc independent of t and α, we obtain:

σ (t) =
∫ t

tgel

Ec(t − θ, α)

1 − νc

dεc(θ )

dθ
dθ (14)

where Ec is the Young’s modulus, νc is the Poisson’s
ratio, εc is the strain induced by the chemical shrink-
age, α is the conversion, t is the time, tgel is the time
to gelation, and the subscript c refers to the composite.
tgel is assumed to occur as α reaches αgel = 0.1. This
is when the polymer gels, changing from the liquid to
the solid, rubbery state. No stresses will form in the
liquid state. The choice of αgel = 0.1 is based on values
for αgel reported in other studies on similar materials
[11, 28, 29]. Furthermore, the final residual stress pre-
diction was found to be fairly insensitive to the choice
of αgel. This is because the time during which the poly-
mer is in the rubbery state is quite long, and in our
case shrinkage does not generate large stresses in the
rubbery state.

Equation 14 is conveniently integrated in the elastic
case, but not in the viscoelastic case where therefore the
differential form is used. Because of the representation
chosen for the matrix Young’s modulus, see Equation 5,
the expression for composite modulus Ec is of a similar
form. For this reason, we need to solve a set of differen-
tial equations, as shown below. We incorporate the form
of Ec analogous to Equations 5 in 14 and then the result-
ing equation is differentiated, leading to Equation 15.
The first one (15a) is for each weight factor and the
second one (15b) is for the relaxed modulus.

dσi

dt
+ σi

τp10i−15
= Eu − E∞

1 − ν
Wi

dεs

dt
(15a)

dσ∞
dt

= E∞
1 − ν

dεs

dt
(15b)

The equations represented in 15 are solved using finite
difference. The residual stress is determined as the sum
of these results.

5. Results and discussion
5.1. Development of the model
The first submodel is the one for cure kinetics, see
Fig. 2. Here we followed the procedure in ref. [9] for de-
termination of model parameters from isothermal DSC
scans. A necessary part of that model is the relationship
between the maximum degree of conversion, αm , at a
given temperature and the isothermal cure temperature,
T . This relationship arises because the polymer matrix
vitrifies as its Tg reaches the temperature at which it is
cured [30]. Because of the vitrification, reaction rates
become very slow. We expect αm = f (T ) to have a sim-
ilar shape as Tg = f (α) although Tg will have slightly
higher values. The experimental data are presented in
Fig. 3. As expected, a linear variation was found be-
tween αm and T , as was also observed by Maffezoli
et al. [9] for dental composites.

In the submodel for viscoelastic description of the
material, we need to experimentally determine the ef-
fect of α on Eu and E∞. The logarithms of Eu and
E∞ were found to depend linearly on α, see Fig. 4.
These dependencies were used, see Table I. In Fig. 4,

Figure 3 Data for maximum degree of conversion αm as a function of
isothermal cure temperature T (dark squares). The line represents the
linear model fit.

Figure 4 Logarithm of principal relaxation time τ E
p , unrelaxed modulus

Eu (GPa), and relaxed modulus E∞ (MPa) as a function of degree of
conversion α. The lines represent linear fits to data used in the models.
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Figure 5 Reduced Young’s modulus master curve as a function of re-
duced time. Data are for pure resin samples at different degree of con-
version and have been shifted horizontally by τ E

p .

we also present predictions for τ E
p based on Equation 6.

There is good agreement between predictions and data
which supports the validity of the expression for log aT

in Table I.
In Fig. 5, the reduced Young’s modulus is presented

for the resin. We may note that the relaxation time spec-
trum is very wide. The reason is the wide distribution of
connectivity in this network polymer. In other words,
the molecular network is inhomogeneous and different
“linkages” have different lengths and relaxation times.

In the modeling section, we stated that the weight
factors Wi in the viscoelastic model were found to be
independent of α. Indeed, as the reduced Young’s mod-
ulus, (E − E∞)/(Eu − E∞), is plotted against the re-
duced time t/τ E

p in Fig. 5, all data based on different α

fall on a single master curve. This is an important aspect
of the material behavior, since it allows us to use time-
cure superposition theory. Time-cure superposition has
been applied to network polymers previously [31–33]
for long relaxation times. Adolf and Martin [34] were
the first to develop a theory for the entire relaxation time
spectrum of an epoxy system. Time-cure superposition
is analogous to the classical time-temperature super-
position theory in viscoelasticity. In time-cure super-
position, the shifts in relaxation times result not from
a change in molecular friction, but from a change in
cross-link density. Normally the theory is valid in the
critical regime near the gel point but not necessarily at
reaction completion. However, their experimental data
show that superposition is valid over at least half of the
reaction. In our case, the data show that the theory is
valid all the way from the glassy state to the rubbery
state for samples that are quite far from the gel point.
Consequently, time-cure superposition theory appears
valid for acrylate systems over a wide range of α and
not only near the gel point. In the study by Lange et al.
on acrylate coatings, time-cure superposition was also
applied although the verification was not complete [35].
The great advantage of time-cure superposition is that
it allows the complete viscoelastic behavior of the sys-
tem to be described from experimental “snapshots” at
discrete times during the course of the reaction.

In Fig. 6, the shrinkage of the matrix as a function
of the calculated degree of cure (cure kinetics model)

Figure 6 Measured shrinkage as a function of calculated degree of con-
version. The shrinkage model and the initial linear shrinkage are also
represented.

is presented for the resin. It is clear that the shrinkage
of the matrix is no longer linearly related to the degree
of cure in the later stages, as the vitrification region
is entered. This is in accordance with earlier observa-
tions [36, 37]. The non-linearity of the matrix shrinkage
with degree of cure due to vitrification is an important
phenomenon. Just to illustrate its importance, a linear
model was also determined from the data, see Fig. 6
and Equation 11.

In our shrinkage model, the principal relaxation time
(obtained from experiments), τ ε

p, is 106 times the relax-
ation time for the Young’s modulus, τ E

p . This observa-
tion needs some further comments. It has been observed
previously, that volume change and creep compliance
have the same temperature dependence [38–40]. For
this reason, we assume that volume change and relax-
ation modulus have the same dependence on degree of
conversion. At the same time, we expect the volume
change process to take more time. In support of this ex-
pectation, it has been observed that the maximum of the
imaginary part of the dynamic bulk modulus occurs at a
higher temperature than the maximum of the imaginary
part of the dynamic shear modulus [41]. Volume relax-
ation therefore needs more time than shear relaxation,
as is observed in our case.

The weight factors were considered identical to the
weight factors of the Young’s modulus. This assump-
tion is supported by a previous study [42]. A stretched
exponential function was used to fit dielectric and me-
chanical transitions of acrylate networks cured with UV
light. The distribution parameter obtained from dielec-
tric measurements was in very good agreement with the
mechanical one and this for different degrees of con-
version. Dielectric transitions are generally related to
structural transitions, corresponding to changes in free
volume or volume transitions. The volume and mechan-
ical transitions are therefore considered to be similar in
nature in this respect.

5.2. Comparison of residual stress
predictions with experimental data

In Fig. 7, the effect of V f on Ec and εc is shown as
well as the residual stress, σ , calculated by the elastic
and viscoelastic models at an isothermal temperature
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Figure 7 Modeling predictions. a) Composite shrinkage strain εc and
composite modulus Ec as a function of volume fraction V f · T = 40◦C
and α = αmax. b) Residual stress σ as a function of volume fraction V f .
Elastic and viscoelastic predictions. T = 40◦C, t = 7 min.

of 40◦C. The shapes of the curves differ slightly. For
both models, predictions demonstrate a maximum in
σ at a certain V f . This V f is the same for both mod-
els, around 0.45. The reason for the maximum is the
different dependencies of composite modulus, Ec, and
composite shrinkage, εc, on V f . The effect of V f is
significant. With no filler, the residual stress in our ex-
periment is 8 MPa whereas at V f = 0.45 the stress is
11 MPa.

We may note that even at high V f , the influence of vis-
coelastic relaxation effects is quite strong. An important
conclusion is therefore that viscoelastic effects must be
included in any analysis of residual stresses in dental
composites. In the previously mentioned acrylate coat-
ing study by Lange et al. [35], the predicted viscoelastic
effects were weaker than in our case. This is proba-
bly because the shrinkage model associated with their
elastic predictions is non-linear and contains some vis-
coelastic effects. The importance of cross-link density
was nicely demonstrated in ref. [35]. The moderately
cross-linked acrylate showed much stronger relaxation
effects than the densely cross-linked acrylate.

In Fig. 8, the elastic and the viscoelastic predictions
for residual stress at the end of the 7 minutes of light
curing are presented together with experimental data
for composites of different V f . Note that predictions
in Fig. 8 are based on theoretical models and charac-
terization of the polymer matrix only. Matrix and filler
data are used to predict composite residual stress using
theoretical models without fitting parameters.

Viscoelastic predictions are in good agreement with
experimental data whereas elastic predictions are too
high. Again, we conclude that viscoelastic relaxation
effects during curing are very important. There is ob-
viously great potential to exploit the relaxation effects
in order to minimize the residual stress level in a den-

Figure 8 Residual stress σ as a function of volume fraction V f .
Predictions and data, t = 7 min. Temperatures of modeling correspond
to experimental maximum temperatures.

Figure 9 Residual stress σ as a function of curing time. Predictions and
data are for the pure resin. T = 55◦C.

tal composite. When the viscoelastic predictions were
combined with the linear shrinkage model, Equation 11,
predictions were between the two models in Fig. 8. The
shortcomings with the linear model are discussed in
connection with Fig. 9.

There was one practical difficulty with the residual
stress experiments which we were unable to avoid. The
exothermal heat of the curing reaction caused a tem-
perature increase, whereas the analysis is isothermal.
The maximum temperature measured at the bottom of
the substrate of the bimaterial experiment was 46, 47.7,
44.2, 44.1, 40.6 and 34.8◦C for V f equals 0, 0.07, 0.165,
0.265, 0.4, 0.55 respectively. In order to compensate for
this, the maximum temperature measured for each V f

was used for the isothermal predictions. In support of
this simplification we observed that for the pure resin,
the isothermal predictions and the experimental data
have similar final degree of cure after 7 min of cur-
ing. A consequence of the different temperatures used
in the predictions in Fig. 8 is that σ is higher at high
V f compared to Fig. 7 and the stress levels are slightly
different. The decreased cure temperature at high V f

causes earlier vitrification and slightly higher stiffness
of the glassy material. σ therefore becomes higher at
high V f .
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In Fig. 9, residual stress as a function of time is pre-
sented for the neat resin. The experimental data are
described by the solid line and the final residual stress
for this specimen is 8 MPa. During the first 30 seconds,
there is no stress development. Then follows a region
in which the stress gradually increases and then levels
off at around 3 minutes.

The elastic predictions based on linear shrinkage are
much higher than experimental data. Predictions are
also presented for the viscoelastic case with a linear
shrinkage model. These predictions are lower than elas-
tic predictions, but still much higher than experimental
data. In contrast, the agreement is very good between
data and viscoelasticity predictions using the non-linear
shrinkage model.

The reason for the shortcomings of the linear shrink-
age model is of interest. Even if this shrinkage model is
adjusted so that the final shrinkage agrees with the ex-
perimentally measured shrinkage, stress predictions are
wrong. The reason is that in residual stress modeling,
the distribution of shrinkage during the curing process
is very important. For instance, the extent of shrinkage
is very large during the transition from the rubbery to
the glassy state. However, in this region the relaxation
effects are also dramatic. Because of this interaction
between the shrinkage model and the viscoelastic re-
laxation model, correct predictions are very sensitive to
the distribution of shrinkage as a function of degree of
cure.

The first minute of the predicted residual stress de-
velopment in Fig. 9 show very similar results for the
three models. Then the models with linear shrinkage
start to overestimate σ . The reason is that during this
first minute, the resin is liquid and rubbery, so the
Young’s modulus and the shrinkage are the same for the
three models. But as the material enters the glass transi-
tion region, shrinkage predictions become an important
factor.

There is a deviation between data and viscoelastic
predictions with non-linear shrinkage during the first
minute. This is caused by the slightly non-isothermal
conditions and the difference in thermal expansion be-
tween the strain gage and the substrate.

An interesting question is why the predicted stress
in Fig. 9 increases so rapidly between 1 and 2 min-
utes. Also we may note that the difference between
elastic and viscoelastic predictions do not really start
until around 2 minutes for the linear shrinkage case.
The reasons for these observations may be clarified
from Fig. 10. Matrix modulus development with time is
presented as well as the change in degree of conversion.
The strong increase in Em between 1 and 2 minutes ex-
plains the strong stress increase in this region. Em in-
creases because the polymer enters the glass transition
region and Em becomes dramatically higher than in the
rubbery state.

The change in α with time is also of interest. At
1 minute, α is already about 0.35 but only low Em ex-
ists (still rubbery state). Then as α goes from 0.35 to
about 0.5, there is a strong increase in Em since we
enter the glass transition region. The matrix becomes
glassy (vitrification) because Tg is approaching the cure

Figure 10 Predictions of matrix Young’s modulus Em (left axis) and
degree of conversion α (right axis) as a function of curing time. Em is
based on elastic and viscoelastic models. T = 55◦C.

temperature. Although we plot α, the vitrification phe-
nomenon itself is the major factor generating residual
stresses.

We may also note that the viscoelastic effects start to
show around 1.5 minutes and then become increasingly
larger with time (larger differences elastic-viscoelastic
case). The significant decrease in modulus after 4 min-
utes is caused by the fact that we are still in the transition
region at that temperature.

The strong but gradual increase in Em between 1 and
2 minutes is related to the increase in α and the shape
of the relaxation time spectrum in Fig. 5. We can then
suggest two possibilities to reduce chemically formed
residual stresses. Slow increase in α, by either slow cure
kinetics of the resin or judicious choice of cure condi-
tions, would allow more time for relaxation effects. The
other possibility is by designing the network polymer
in such a way that the relaxation time spectrum is more
narrow. Such a polymer has higher relaxation rates in
the transition region.

In practice, the intensity of the dental lamp is about
20 times higher than in our experiments. Then there
is very little time for relaxation effects and the resid-
ual stresses actually developed should be closer to the
predictions based on the elastic case.

6. Conclusions
A combined modeling and materials characterization
approach was developed for prediction of chemical
residual stresses σ in dental composites. The master
model contains interacting submodels for cure kinet-
ics, development of viscoelastic (or elastic) properties,
volume change and stress development. The approach
is micromechanical in nature, including effects from
polymer characteristics as well as filler volume frac-
tion V f and particle properties on composite behav-
ior. A key parameter is the degree of cure α, since de-
velopment of viscoelastic properties and the volume
change are controlled by α. From the model, develop-
ment of α with curing time may be predicted as a func-
tion of resin cure kinetics, degree of cure, temperature,
filler and matrix elastic properties, viscoelastic matrix
properties, non-linear matrix shrinkage and V f . The
model takes stress relaxation into account through the
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complete relaxation time spectrum of the resin. The
model is also based on time-cure superposition theory
and this was validated over a wide range of α for the
acrylate system studied.

Predictions of σ as a function of V f in a bimate-
rial set-up, demonstrated a maximum at V f · = 0.45.
The reason was the different dependencies of curing-
induced volume change and increased modulus on V f .
Very high V f , approaching 0.7, is therefore favorable
from the point of view of residual stresses.

Viscoelastic model predictions of σ as a function of
V f were also found to agree very well with experimental
data. This is very encouraging, since the model predic-
tions are not based on any fitting procedure but rather on
experimental data for the constituents combined with
theoretical models. For improved predictive capability,
extension of the model to non-isothermal conditions
is required. The reason is the high reactivity of free
radical cured dental composite resins, causing consid-
erable heat generation even in small material volumes.
Thermal strains due to differences in thermal expansion
between enamel and the composite are also likely to be
important.

Residual stress predictions based on elastic material
behavior were twice as high as experimental data and
viscoelastic predictions. This demonstrates that relax-
ation effects can be very strong. Viscoelastic stress re-
laxation effects can therefore be exploited in order to
reduce residual stress levels.

An important submodel is the volume change (linear
shrinkage in the present case) as a function of degree of
cure. Our results demonstrate that the non-linear distri-
bution of shrinkage during the curing process is critical
to the predicted residual stresses. This is because of the
interaction between the shrinkage model and the vis-
coelastic relaxation model. For instance, although the
shrinkage is very large in the glass transition region, the
resulting stresses are not so high due to correspondingly
high relaxation rates.

In order to study the physics of the residual stress de-
velopment process, the development of stress with time
was predicted for a given case. In the early stages of cur-
ing, σ was low since the resin was in the rubbery state.
In a narrow time interval, σ then increased rapidly. This
was directly related to the increase in composite mod-
ulus Ec as the resin entered the glass transition region.
In this stage α went from 0.35 to about 0.5. Compari-
son between elastic and viscoelastic predictions in this
region again demonstrated the importance of stress re-
laxation effects and non-linear matrix shrinkage. This
is the particular region where curing conditions could
be controlled to maximize stress relaxation effects and
reduce σ . The relaxation time spectrum of the resin is
of major importance in this context and is controlled
by the resin network structure. The model can there-
fore be applied to tailor not only cure conditions but
also the relaxation time spectrum and cure kinetics of
new resins in order to obtain favorable residual stress
characteristics.

In practice, the intensity of the dental lamp is about
20 times higher than in our experiments. Then there
is very little time for relaxation effects. The residual

stresses actually developed would then be closer to the
predictions based on the elastic case. However, modern
lamps also allow for pulsed illumination. This provides
new possibilities for controlled pauses so that the con-
ditions for relaxation effects become favorable.
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